Optica Open
Browse

Strain-Driven Thermal and Optical Instability in Silver/Amorphous-Silicon Hyperbolic Metamaterials

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:41 authored by Jose L. Ocana-Pujol, Lea Forster, Ralph Spolenak, Henning Galinski
Hyperbolic metamaterials show exceptional optical properties, such as near-perfect broadband absorption, due to their geometrically-engineered optical anisotropy. Many of their proposed applications, such as thermophotovoltaics or radiative cooling, require high-temperature stability. In this work we examine Ag/a-Si multilayers as a model system for the thermal stability of hyperbolic metamaterials. Using a combination of nanotomography, finite element simulations and optical spectroscopy, we map the thermal and optical instability of the metamaterials. Although the thermal instability initiates at 300C, the hyperbolic dispersion persists up to 500C. Direct finite element simulations on tomographical data provide a route to decouple and evaluate interfacial and elastic strain energy contributions to the instability. Depending on stacking order the instability's driving force is either dominated by changes in anisotropic elastic strain energy due thermal expansion mismatch or by minimization of interfacial energy. Our findings open new avenues to understand multilayer instability and pave the way to design hyperbolic metamaterials able to withstand high temperatures.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC