Optica Open
Browse

Strip-Loaded Nanophotonic Interfaces for Resonant Coupling and Single-Photon Routing

Download (5.58 kB)
preprint
posted on 2024-08-07, 16:00 authored by Katharine Snow, Fatemeh Moradiani, Hamidreza Siampour
We report on the design and simulation of strip-loaded nanophotonic interfaces aimed at improving resonant coupling and photon routing efficiency. In our design, the guided mode is confined within a plane by a high-index thin film and is loosely confined laterally by a lower index strip. Using a hydrogen silsesquioxane (HSQ) strip, titanium dioxide core, and silicon dioxide substrate, we optimise the waveguide dimensions for maximum lateral confinement of light. Specifically, we propose a polymer-based Bragg grating cavity and ring resonator that achieve near-optimal mode volumes and high Q-factors. Our simulations suggest that a cavity with a mode volume of V_{\text{eff}} \approx 7.0 \left(\frac{\lambda}{n}\right)^3 and a Q-factor of 7000 can produce photons with 97% indistinguishability at 4K. Additionally, we investigate directional couplers for efficient photon routing, comparing photonic and plasmonic material structures. While pure photonic structures demonstrate lower loss and improved quality factors, they face practical limitations in terms of bending radius. Conversely, plasmonic structures offer shorter bending radii but higher propagation losses. This research lays the groundwork for future nanophotonic designs, aiming to enhance photon generation and routing capabilities for quantum optical applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC