Optica Open
Browse
- No file added yet -

Strong broadband intensity noise squeezing from near-infrared to terahertz frequencies in semiconductor lasers with nonlinear dissipation

Download (5.58 kB)
Version 2 2024-05-09, 16:00
Version 1 2023-01-10, 03:31
preprint
posted on 2024-05-09, 16:00 authored by Sahil Pontula, Jamison Sloan, Nicholas Rivera, Marin Soljacic
The generation and application of squeezed light have long been central goals of quantum optics, enabling sensing below the standard quantum limit, optical quantum computing platforms, and more. Intensity noise squeezing of bright (coherent) states, in contrast to squeezed vacuum, is relatively underdeveloped. Bright squeezing has been generated directly through nonlinear optical processes or ``quietly pumped'' semiconductor lasers. However, these methods suffer from weak squeezing limits, narrow operating wavelength ranges, and have not been explored at large bandwidths. Here, we show how semiconductor lasers with sharp intensity-dependent dissipation can support highly broadband intensity noise squeezing from infrared (IR) to terahertz (THz) wavelengths, the latter of which has remained unexplored in quantum noise studies. Our protocol realizes strongly ($>10$ dB) intensity noise-squeezed intracavity quantum states, which could create a new regime for cavity quantum electrodynamics experiments, as well as strong output squeezing surpassing gigahertz bandwidths. Furthermore, we show how the same systems also create self-pulsing and bistable mean field behavior, enabling control of light in both the temporal and noise domains. The existence of these multiple functionalities in both the classical and quantum mechanical domains in a single semiconductor laser platform, from IR to THz wavelengths, could enable advances in on-chip quantum optical communication, computing, and sensing across the electromagnetic spectrum.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC