Optica Open
Browse

Study on electromagnetically induced transparency effects in Dirac and VO$_2$ hybrid material structure

Download (5.58 kB)
preprint
posted on 2023-12-21, 17:00 authored by Di Ke, Xie Meng, Xia Hua Rong, Cheng An Yu, Liu Yu, Du Jia Jia
In this paper, we present a metamaterial structure of Dirac and vanadium dioxide and investigate its optical properties using the finite-difference time-domain (FDTD) technique. Using the phase transition feature of vanadium dioxide, the design can realize active tuning of the PIT effect at terahertz frequency, thereby converting from a single PIT to a double PIT. When VO$_2$ is in the insulating state, the structure is symmetric to obtain a single-band PIT effect; When VO$_2$ is in the metallic state, the structure turns asymmetric to realize a dual-band PIT effect. This design provides a reference direction for the design of actively tunable metamaterials. Additionally, it is discovered that the transparent window's resonant frequency and the Dirac material's Fermi level in this structure have a somewhat linear relationship. In addition, the structure achieves superior refractive index sensitivity in the terahertz band, surpassing 1 THz/RIU. Consequently, the concept exhibits encouraging potential for application in refractive index sensors and optical switches.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC