posted on 2024-09-28, 16:00authored byHani Nejadriahi, Eric Kittlaus, Debapam Bose, Nitesh Chauhan, Jiawei Wang, Mathieu Fradet, Mahmood Bagheri, Andrei Isichenko, David Heim, Siamak Forouhar, Daniel Blumenthal
We demonstrate an external cavity laser with intrinsic linewidth below 100 Hz around an operating wavelength of 852 nm, selected for its relevance to laser cooling and manipulation of cesium atoms. This system achieves a maximum CW output power of 24 mW, wavelength tunability over 15 nm, and a side-mode suppression ratio exceeding 50 dB. This performance level is facilitated by careful design of a low-loss integrated silicon nitride photonic circuit serving as the external cavity combined with commercially available semiconductor gain chips. This approach demonstrates the feasibility of compact integrated lasers with sub-kHz linewidth centering on the needs of emerging sensor concepts based on ultracold atoms and can be further extended to shorter wavelengths via selection of suitable semiconductor gain media.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.