Optica Open
Browse

Submillimeter-wave cornea phantom sensing over an extended depth of field with an axicon-generated Bessel beam

Download (5.58 kB)
Version 2 2023-06-08, 12:56
Version 1 2023-03-01, 17:00
preprint
posted on 2023-06-08, 12:56 authored by Mariangela Baggio, Aleksi Tamminen, Joel Lamberg, Roman Grigorev, Samu-Ville Pälli, Juha Ala-Laurinaho, Irina Nefedova, Jean-Louis Bourges, Sophie X. Deng, Elliott R. Brown, Vincent P. Wallace, Zachary D. Taylor
The feasibility of a 220 - 330 GHz zero order axicon generated Bessel beam for corneal water content was explored. Simulation and experimental data from the 25-degree cone angle hyperbolic-axicon lens illuminating metallic spherical targets demonstrate a monotonically decreasing, band integrated, backscatter intensity for increasing radius of curvature from 7 - 11 mm, when lens reflector and optical axis are aligned. Further, for radii >= 9.5 mm, maximum signal was obtained with a 1 mm transverse displacement between lens and reflector optical axes arising from spatial correlation between main lobe and out of phase side lobes. Thickness and permittivity parameter estimation experiments were performed on an 8 mm radius of curvature, 1 mm thick fused quartz dome over a 10 mm axial span. Extracted thickness and permittivity varied by less than ~ 25 $\mu$m and 0.2 respectively after correction for superluminal velocity. Estimated water permittivity and thickness of water backed gelatin phantoms showed significantly more variation due to a time varying radius of curvature.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC