Optica Open
Browse

Superfluorescent scintillation from coupled perovskite quantum dots

Download (5.58 kB)
preprint
posted on 2025-01-01, 17:01 authored by Shaul Katznelson, Shai Levy, Alexey Gorlach, Nathan Regev, Michael Birk, Chen Mechel, Offek Tziperman, Roman Schuetz, Rotem Strassberg, Georgy Dosovitsky, Charles Roques-Carmes, Yehonadav Bekenstein, Ido Kaminer
Scintillation, the process of converting high-energy radiation to detectable visible light, is pivotal in advanced technologies spanning from medical diagnostics to fundamental scientific research. Despite significant advancements toward faster and more efficient scintillators, there remains a fundamental limit arising from the intrinsic properties of scintillating materials. The scintillation process culminates in spontaneous emission of visible light, which is restricted in rate by the oscillator strength of individual emission centers. Here, we observe a novel collective emission phenomenon under X-ray excitation, breaking this limit and accelerating the emission. Our observation reveals that strong interactions between simultaneously excited coupled perovskite quantum dots can create collective radioluminescence. This effect is characterized by a spectral shift and an enhanced rate of emission, with an average lifetime of 230 ps, 14 times faster than their room temperature spontaneous emission. It has been established that such quantum dots exhibit superfluorescence under UV excitation. However, X-ray superfluorescence is inherently different, as each high-energy photon creates multiple synchronized excitation events, triggered by a photoelectron and resulting in even faster emission rates, a larger spectral shift, and a broader spectrum. This observation is consistent with a quantum-optical analysis explaining both the UV-driven and X-ray-driven effects. We use a Hanbury-Brown-Twiss g^(2) ({\tau}) setup to analyze the temperature-dependent temporal response of these scintillators. Collective radioluminescence breaks the limit of scintillation lifetime based on spontaneous emission and could dramatically improve time-of-flight detector performance, introducing quantum enhancements to scintillation science.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC