Optica Open
Browse
arXiv.svg (5.58 kB)

Superradiant scattering in fluids of light

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:10 authored by Angus Prain, Calum Maitland, Daniele Faccio, Francesco Marino
We theoretically investigate the scattering process of Bogoliubov excitations on a rotating photon-fluid. Using the language of Noether currents we demonstrate the occurrence of a resonant amplification phenomenon, which reduces to the standard superradiance in the hydrodynamic limit. We make use of a time-domain formulation where superradiance emerges as a transient effect encoded in the amplitudes and phases of propagating localised wavepackets. Our findings generalize previous studies in quantum fluids to the case of a non-negligible quantum pressure and can be readily applied also to other physical systems, in particular atomic Bose-Einstein condensates. Finally we discuss ongoing experiments to observe superradiance in photon fluids, and how our time domain analysis can be used to characterise superradiant scattering in non-ideal experimental conditions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC