Optica Open
Browse
arXiv.svg (5.58 kB)

Suppressing Decoherence in Quantum Plasmonic Systems by Spectral Hole Burning Effect

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:36 authored by Jia-Bin You, Xiao Xiong, Ping Bai, Zhang-Kai Zhou, Wan-Li Yang, Ching Eng Png, Leong Chuan Kwek, Lin Wu
Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings. Based on our quantum simulations via a quantum tensor network algorithm, we numerically demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter ensemble with inhomogeneously-broadened transition frequencies. By burning two narrow spectral holes in the spectral density of the emitter ensemble, the coherent time of Rabi oscillation for the hybrid system is increased tenfold. With the suppressed decoherence, we move one step further in bringing plasmonic systems into practical quantum applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC