Skyrmions, as quasiparticles with topological spin textures, has recently garnered great attention for both condensed matter and structured wave communities, promising next-generation large-density robust information technologies. However, a big challenge to this end is that the generation of high-order skyrmions is elusive in any physical systems. Here, we propose the method to create and control ultra-high-order skyrmions (skyrmion number up to $400^{th}$) in a structured light system. We also experimentally control the topological state transition between bimeron and skyrmion, arbitrarily tailor the transverse size of an arbitrary-order skyrmionic beam independent of topological number, and ensure the topological stability upon propagation. Our work offers solutions for topologically resilient communication and memory with much enhanced information capacity.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.