Optica Open
Browse

Temperature-Dependent Group Delay of Photonic-Bandgap Hollow-Core Fiber Tuned by Surface-Mode Coupling

Download (5.58 kB)
preprint
posted on 2023-01-12, 13:59 authored by Yazhou Wang, Zhengran Li, Fei Yu, Meng Wang, Ying Han, Lili Hu, Jonathan Knight
Surface modes (SM) are highly spatially localized modes existing at the core-cladding interface of photonic-bandgap hollow-core fiber (PBG-HCF). When coupling with SM, the air modes (AM) in the core would suffer a higher loss despite being spectrally within the cladding photonic bandgap, and would be highly dispersive around the avoided crossing (anti-crossing) wavelength. In this paper, we numerically demonstrate that such avoided crossings can play an important role in the tuning of the temperature dependence of group delay of AM of PBG-HCF. At higher temperatures, both the thermal-optic effect and thermal expansion contribute to the redshift of avoided crossing wavelength, giving rise to a temperature dependence of the AM dispersion. Numerical simulations show that the redshift of avoided crossing can significantly tune the thermal coefficient of delay (TCD) of PBG-HCF from -400 ps/km/K to 400 ps/km/K, approximately -120 ppm/K to 120 ppm/K. In comparison with the known tuning mechanism by the thermal-induced redshift of photonic bandgap [Fokoua et al., Optica 4, 659, 2017], the tuning of TCD by SM coupling presents a much broader tuning range and higher efficiency. Our finding would provide a new route to design PBG-HCF for propagation time sensitive applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC