Optica Open
Browse

Tensor network methods for quantum-inspired image processing and classical optics

Download (5.58 kB)
preprint
posted on 2025-10-30, 16:00 authored by Nicolas Allegra
Tensor network methods strike a middle ground between fully-fledged quantum computing and classical computing, as they take inspiration from quantum systems to significantly speed up certain classical operations. Their strength lies in their compressive power and the wide variety of efficient algorithms that operate within this compressed space. In this work, we focus on applying these methods to fundamental problems in image processing and classical optics such as wave-front propagation and optical image formation, by using directly or indirectly parallels with quantum mechanics and computation. These quantum-inspired methods are expected to yield faster algorithms with applications ranging from astronomy and earth observation to microscopy and classical imaging more broadly.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC