Optica Open
Browse

Terabit-class coherent communications enabled by an integrated photonics erbium doped amplifier

Download (5.58 kB)
preprint
posted on 2024-12-12, 17:00 authored by Di Che, Stefano Grillanda, Yang Liu, Zheru Qiu, Xinru Ji, Gregory Raybon, Xi Chen, Kwangwoong Kim, Tobias J. Kippenberg, Andrea Blanco-Redondo
Coherent technologies have revolutionized optical communications, driving the capacity per fiber to multi-terabit per second (Tb/s) in combination with wavelength division multiplexing (WDM). With an ever-increasing deployment density of coherent systems, the demand for highly integrated WDM coherent transceivers has been rising. While tremendous progress has been made on silicon photonics compatible high-speed modulation and photodetection on chip, a solution for monolithically integrable amplifier with high gain and output power remains a challenge. Recently, an erbium doped waveguide amplifier based on ultra-low loss silicon nitride waveguides has demonstrated gain and output power levels potentially suitable for Terabit class coherent communications. Here, we demonstrate a WDM coherent system enabled by this integrated photonic amplification solution. The system uses the waveguide amplifier as a booster amplifier of 16 WDM signals each carrying a net data rate of 1.6 Tb/s, achieving 25.6-Tb/s net capacity over 81-km fiber transmission. Our results highlight a fully integrated solution for highly parallel coherent transceivers including amplification, that has the potential to transform future optical communications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC