Optica Open
Browse

Terahertz binding of nanoparticles based on graphene surface plasmons excitations

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:31 authored by Hernán Ferrari, Carlos J. Zapata Rodríguez, Mauro Cuevas
This work studies the optical binding of a dimer composed by dielectric particles close to a graphene sheet. Using a rigorous electromagnetic method, we calculated the optical force acting on each nanoparticle. In addition, we deduced analytical expressions enabling to evaluate the contribution of graphene surface plasmons (GSPs) to optical binding. Our results show that surface plasmon on graphene excitations generate multiple equilibrium positions for which the distance between particles are tens of times smaller than the photon wavelength. Moreover, these positions can be dynamically controlled by adjusting the chemical potential on graphene. Normal and oblique incidence have been considered.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC