Optica Open
Browse

Terahertz semiconductor laser chaos

Download (5.58 kB)
preprint
posted on 2024-10-30, 16:00 authored by Binbin Liu, Carlo Silvestri, Kang Zhou, Xuhong Ma, Shumin Wu, Ziping Li, Wenjian Wan, Zhenzhen Zhang, Ying Zhang, Junsong Peng, Heping Zeng, Cheng Wang, Massimo Brambilla, Lorenzo Columbo, Hua Li
Chaos characterized by its irregularity and high sensitivity to initial conditions finds various applications in secure optical communications, random number generations, light detection and ranging systems, etc. Semiconductor lasers serve as ideal light platforms for chaos generations owing to the advantages in on-chip integration and complex nonlinear effects. In near-infrared wavelengths, semiconductor laser based chaotic light sources have been extensively studied and experimentally demonstrated. However, in the terahertz (THz) spectral range, due to the lack of effective THz light sources and high-speed detectors, chaos generation in THz semiconductor lasers, e.g., quantum cascade lasers (QCLs), is particularly challenging. Due to the fast intersubband carrier transitions, single mode THz QCLs resemble Class A lasers, where chaos can be hardly excited, even with external perturbations. In this work, we experimentally show a THz chaos source based on a sole multimode THz QCL without any external perturbations. Such a dynamical regime is characterized by the largest Lyapunov exponent associated to the temporal traces of the measured radio frequency (intermode beatnote) signal of the laser. The experimental results and chaos validation are confirmed by simulations of our model based on effective semiconductor Maxwell-Bloch Equations. To further understand the physical mechanism of the chaos generation in THz QCLs, a reduced model based on two coupled complex Ginzburg-Landau equations is derived from the full model cited above to systematically investigate the effects of the linewidth enhancement factor and group velocity dispersion on the chaotic regime. This model allows us to show that the chaos generation in the THz QCL can be ascribed to the system attaining the defect mediated turbulence regime.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC