Optica Open
Browse

The Effect of Non-Gaussian Noise on Auto-correlative Weak-value Amplification

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:52 authored by Jing-Hui Huang, J. S. Lundeen, Adetunmise C. Dada, Kyle M. Jordan, Guang-Jun Wang, Xue-Ying Duan, Xiang-Yun Hu
Accurate knowledge of the spectral features of noise and their influence on open quantum systems is fundamental for quantitative understanding and prediction of the dynamics in a realistic environment. For the weak measurements of two-level systems, the weak value obtained from experiments will inevitably be affected by the noise of the environment. Following our earlier work on the technique of the auto-correlative weak-value amplification (AWVA) approach under a Gaussian noise environment, here we study the effect of non-Gaussian noise on the AWVA technique.In particular, two types of noise with a negative-dB signal-to-noise ratio, frequency-stationary noises and frequency-nonstationary noises are studied. The various frequency-stationary noises, including low-frequency (1/f) noises, medium-frequency noises, and high-frequency noises, are generated in Simulink by translating the Gaussian white noise with different band-pass filters. While impulsive noise is studied as an example of frequency-non stationary noises. Our simulated results demonstrate that 1/f noises and impulsive noises have greater disturbance on the AWVA measurements. In addition, adding one kind of frequency-stationary noise, clamping the detected signals, and dominating the measurement range may {have} the potential to improve the precision of the AWVA technique with both a smaller deviation of the mean value and a smaller error bar in the presence of many hostile non-Gaussian noises.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC