Optica Open
Browse
- No file added yet -

The imaginary part of the high-harmonic cutoff

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:31 authored by Emilio Pisanty, Marcelo F. Ciappina, Maciej Lewenstein
High-harmonic generation - the emission of high-frequency radiation by the ionization and subsequent recombination of an atomic electron driven by a strong laser field - is widely understood using a quasiclassical trajectory formalism, derived from a saddle-point approximation, where each saddle corresponds to a complex-valued trajectory whose recombination contributes to the harmonic emission. However, the classification of these saddle-points into individual quantum orbits remains a high-friction part of the formalism. Here we present a scheme to classify these trajectories, based on a natural identification of the (complex) time that corresponds to the harmonic cutoff. This identification also provides a natural complex value for the cutoff energy, whose imaginary part controls the strength of quantum-path interference between the quantum orbits that meet at the cutoff. Our construction gives an efficient method to evaluate the location and brightness of the cutoff for a wide class of driver waveforms by solving a single saddle-point equation. It also allows us to explore the intricate topologies of the Riemann surfaces formed by the quantum orbits induced by nontrivial waveforms.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC