Optica Open
Browse

Theoretical and experimental studies of photomechanical materials

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:53 authored by Bojun Zhou, Elizabeth Bernhardt, Ankita Bhuyan, Zoya Ghorbanishiadeh, Nathan Rasmussen, Joseph Lanska, Mark G. Kuzyk
After a brief introduction to the field of light-responsive materials, this paper provides a general theory for modeling the photomechanical response of a material, applies it to the two best-known mechanisms of photothermal heating and photo-isomerization, and then describes an experimental apparatus for quantitative measurements of the stress response. Several different materials are characterized to illustrate how the experiments and theory can be used to isolate the contributing mechanisms both through photomechanical measurements and auxiliary measurements of laser heating and thermal expansion. The efficiency and figure of merit of the photomechanical response is defined on several scales form the molecule to the bulk, and the photomorphon -- the basic material element that determines the bulk response -- is introduced. The photomorphon provides a conceptual model that can be expressed in terms of viscoelastic elements such as springs in series and parallel with the photoactive molecule. The photomechanical response, figure of merit, and the deduced microscopic photomechanical properties are tabulated and proposals for new materials classes are made.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC