posted on 2024-03-14, 16:00authored bySiyi Lu, Bo Hu, Xuemei Yang, Yang Li, Han Wu, Houkun Liang
Birefringence phase-matching based \c{hi}(2) ZnGeP2 (ZGP) waveguide platform has been recently reported for excellent mid-infrared laser generation. Here, a detailed theoretical characterization of mode transmission taking waveguide anisotropy and substrate material absorption into account in a micrometer ZGP waveguide platform (ZGP-on-SiO2) is conducted. Benefited from high-index contrast between ZGP and substrate (SiO2/Air), Transverse electric and magnetic (TM and TE) mode transmission loss at interested wavelengths range of 2 - 12 {\mu}m is calculated to be less than 4 dB/cm and 1.5 dB/cm, respectively, in the designed ZGP waveguide. Notably, non-obvious oscillation of mode transmission loss versus phase-matching angles is observed, which is different from that in the previously reported weakly guided anisotropic waveguide. A vital phenomenon named mode crossing at some wavelengths in TM polarization is also exhibited in our waveguide platforms, which jeopardizes waveguide performances and could be avoided by changing the phase-matching angle in practice. This work provides a significant indication of ZGP waveguide design optimization in future and also exhibits extendibility to other birefringent crystal waveguide platforms.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.