Optica Open
Browse

Theory of radial oscillations in metal nanoparticles driven by optically induced electron density gradients

Download (5.58 kB)
preprint
posted on 2023-03-29, 16:00 authored by Robert Salzwedel, Andreas Knorr, Dominik Hoeing, Holger Lange, Malte Selig
We provide a microscopic approach to describe the onset of radial oscillation of a silver nanoparticle. Using the Heisenberg equation of motion framework, we find that the coupled ultrafast dynamics of coherently excited electron occupation and the coherent phonon amplitude initiate periodic size oscillations of the nanoparticle. Compared to the established interpretation of experiments, our results show a more direct coupling mechanism between the field intensity and coherent phonons. This interaction triggers a size oscillation via an optically induced electron density gradient occurring directly with the optical excitation. This source is more efficient than the incoherent heating process currently discussed in the literature and well-describes the early onset of the oscillations in recent experiments.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC