Optica Open
Browse
arXiv.svg (5.58 kB)

Theory of space-time supermodes in planar multimode waveguides

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:36 authored by Abbas Shiri, Kenneth L. Schepler, Ayman F. Abouraddy
When an optical pulse is focused into a multimode waveguide or fiber, the energy is divided among the available guided modes. Consequently, the initially localized intensity spreads transversely, the spatial profile undergoes rapid variations with axial propagation, and the pulse disperses temporally. Space-time (ST) supermodes are pulsed guided field configurations that propagate invariantly in multimode waveguides by assigning each mode to a prescribed wavelength. ST supermodes can be thus viewed as spectrally discrete, guided-wave counterpart of the recently demonstrated propagation-invariant ST wave packets in free space. The group velocity of an ST supermode is tunable independently -- in principle -- of the waveguide structure, group-velocity dispersion is eliminated or dramatically curtailed, and the time-averaged intensity profile is axially invariant along the waveguide in absence of mode-coupling. We establish here a theoretical framework for studying ST supermodes in planar waveguides. Modal engineering allows sculpting this axially invariant transverse intensity profile from an on-axis peak or dip (dark beam), to a multi-peak or flat distribution. Moreover, ST supermodes can be synthesized using spectrally incoherent light, thus paving the way to potential applications in optical beam delivery for lighting applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC