Optica Open
Browse
arXiv.svg (5.58 kB)

Theory of x-ray scattering from laser-driven electronic systems

Download (5.58 kB)
preprint
posted on 2023-11-29, 05:02 authored by Daria Popova-Gorelova, David A. Reis, Robin Santra
We describe, within the framework of quantum electrodynamics, an interaction between a non-resonant hard x-ray pulse and an electronic system in the presence of a temporally periodic laser field driving electron dynamics in this system. We apply Floquet theory to describe the laser-driven electronic system, and then obtain the scattering probability of an arbitrary nonresonant x-ray pulse from such a system employing the density-matrix formalism. We show that the scattering probability can be connected to the time-dependent electron density of the driven electronic system only under certain conditions, in particular, if the bandwidth of the probe x-ray pulse is sufficiently narrow to spectroscopically resolve transitions to different final states. A special focus is laid on application of the theory to laser-driven crystals in a strongly nonperturbative regime. We show how the time-dependent electron density of a crystal can be reconstructed from energy-resolved scattering patterns. This is illustrated by a calculation of a diffraction signal from a driven MgO crystal.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC