Optica Open
arXiv.svg (5.58 kB)
Download file

Thermodynamic Limits of Photon-Multiplier Luminescent Solar Concentrators

Download (5.58 kB)
posted on 2023-01-12, 15:15 authored by Tomi K Baikie, Arjun Ashoka, Akshay Rao, Neil C. Greenham
Luminescent solar concentrators (LSCs) are theoretically able to concentrate both direct and diffuse solar radiation with extremely high efficiencies. Photon-multiplier luminescent solar concentrators (PM-LSCs) contain chromophores which exceed 100\% photoluminescence quantum efficiency. PM-LSCs have recently been experimentally demonstrated and hold promise to outcompete traditional LSCs. However, we find that the thermodynamic limits of PM-LSCs are different and are sometimes more extreme relative to traditional LSCs. As might be expected, to achieve very high concentration factors a PM-LSC design must also include a free energy change, analogous to the Stokes shift in traditional LSCs. Notably, unlike LSCs, the maximum concentration ratio of a PM-LSC is dependent on brightness of the incident photon field. For some brightnesses, but equivalent energy loss, the PM-LSC has a greater maximum concentration factor than that of the traditional LSC. We find that the thermodynamic requirements to achieve highly concentrating PM-LSCs differ from traditional LSCs. The new model gives insight into the limits of concentration of PM-LSCs and may be used to extract design rules for further PM-LSC design.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics