Optica Open
Browse

Three-dimensional Electromagnetic Void Space

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:17 authored by Changqing Xu, Hongchen Chu, Jie Luo, Zhi Hong Hang, Ying Wu, Yun Lai
We report a realization of three-dimensional (3D) electromagnetic void space. Despite occupying a finite volume of space, such a medium is optically equivalent to an infinitesimal point where electromagnetic waves experience no phase accumulation. The 3D void space is realized by constructing all-dielectric 3D photonic crystals such that the effective permittivity and permeability vanish simultaneously, forming a six-fold Dirac-like point with Dirac-like linear dispersions at the center of the Brillouin Zone. We demonstrate, both theoretically and experimentally, that such a 3D void space exhibits unique properties and rich functionalities absent in any other electromagnetic media, such as boundary-control transmission switching and 3D perfect wave-steering mechanisms. Especially, contrary to the photonic "doping" effect in its two-dimensional counterpart, the 3D void space exhibits an amazing property of "impurity-immunity". Our work paves a road towards the realization of 3D void space where electromagnetic waves can be manipulated in unprecedented ways.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC