Optica Open
Browse
arXiv.svg (5.58 kB)

Time-resolved physical spectrum in cavity quantum electrodynamics

Download (5.58 kB)
preprint
posted on 2023-01-12, 13:56 authored by Makoto Yamaguchi, Alexey Lyasota, Tatsuro Yuge, Yasutomo Ota
The time-resolved physical spectrum of luminescence is theoretically studied for a standard cavity quantum electrodynamics system. In contrast to the power spectrum for the steady state, the correlation functions up to the present time are crucial for the construction of the time-resolved spectrum, while the correlations with future quantities are inaccessible because of the causality, i.e., the future quantities cannot be measured until the future comes. We find that this causality plays a key role to understand the time-resolved spectrum, in which the Rabi doublet can never be seen during the time of the first peak of the Rabi oscillation. Furthermore, the causality can influence on the transient magnitude of the Rabi doublet in some situations. We also study the dynamics of the Fano anti-resonance, where the difference from the Rabi doublet can be highlighted.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC