Optica Open
Browse

Time-reversed Young's experiment: Deterministic, diffractionless second-order interference effect

Download (5.58 kB)
preprint
posted on 2024-12-25, 17:00 authored by Jianming Wen
The classic Young's double-slit experiment exhibits first-order interference, producing alternating bright and dark fringes modulated by the diffraction effect of the slits. In contrast, here we demonstrate that its time-reversed configuration produces an ideal, deterministic second-order 'ghost' interference pattern devoid of diffraction and first-order effect, with the size dependent on the dimensions of the `effectively extended light source.' Furthermore, the new system enables a range of effects and phenomena not available in traditional double-slit interference studies, including the formation of programmed and digitized interference fringes and the coincidence of the pattern plane and the source plane. Despite the absence of first-order interference, our proposed experiment does not rely on nonclassical correlations or quantum entanglement. The elimination of diffraction through time-reversal symmetry holds promise for advancing superresolution optical imaging and sensing techniques beyond existing capabilities.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC