Optica Open
Browse

Time-varying media, relativity, and the arrow of time

Download (5.58 kB)
preprint
posted on 2023-04-19, 16:01 authored by Matias Koivurova, Charles W. Robson, Marco Ornigotti
We study the implications of time-varying wave mechanics, and show how the standard wave equation is modified if the speed of a wave is not constant in time. In particular, waves which experience longitudinal acceleration are shown to have clear relativistic properties when a constant reference speed exists. Moreover, the accelerating wave equation admits only solutions propagating forward in time, which are continuous across material interfaces. We then consider the special case of electromagnetic waves, finding that the Abraham-Minkowski controversy is caused by relativistic effects, and the momentum of light is in fact conserved between different media. Furthermore, we show that the accelerating waves conserve energy when the wave is moving along a geodesic and demonstrate two example solutions. We conclude with some remarks on the role of the accelerating wave equation in the context of the arrow of time.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC