Optica Open
Browse
arXiv.svg (5.58 kB)

Topological-darkness-assisted phase regulation for atomically thin meta-optics

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:20 authored by Yingwei Wang, Zi-Lan Deng, Dejiao Hu, Jian Yuan, Qingdong Ou, Fei Qin, Yinan Zhang, Xu Ouyang, Bo Peng, Yaoyu Cao, Bai-ou Guan, Yupeng Zhang, Jun He, Chengwei Qiu, Qiaoliang Bao, Xiangping Li
Two-dimensional (2D) noble-metal dichalcogenides have emerged as a new platform for the realization of versatile flat optics with a considerable degree of miniaturization. However, light field manipulation at the atomic scale is widely considered unattainable since the vanishing thickness and intrinsic losses of 2D materials completely suppress both resonances and phase accumulation effects. Empowered by conventionally perceived adverse effects of intrinsic losses, we show that the structured PtSe2 films integrated with a uniform substrate can regulate nontrivial singular phase and realize atomic-thick meta-optics in the presence of topological darkness. We experimentally demonstrate a series of atomic-thick binary meta-optics that allows angle-robust and high unit-thickness diffraction efficiency of 0.96%/nm in visible frequencies, given its thickness of merely 4.3 nm. Our results unlock the potential of a new class of 2D flat optics for light field manipulation at an atomic thickness.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC