Optica Open
Browse

Topological Interface-State Lasing in a Polymer-Cholesteric Liquid Crystal Superlattice

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:39 authored by Yu Wang, Donghao Yang, Shaohua Gao, Xinzheng Zhang, Irena Drevensek-Olenik, Qiang Wu, Marouen Chemingui, Zhigang Chen, Jingjun Xu
The advance of topological photonics has heralded a revolution for manipulating light as well as for the development of novel photonic devices such as topological insulator lasers. Here, we demonstrate topological lasing of circular polarization in a polymer-cholesteric liquid crystal (P-CLC) superlattice, tunable in the visible wavelength regime. By use of the femtosecond-laser direct-writing and self-assembling techniques, we establish the P-CLC superlattice with a controlled mini-band structure and a topological interface defect, thereby achieving a low threshold for robust topological lasing at about 0.4 uJ. Thanks to the chiral liquid crystal, not only the emission wavelength is thermally tuned, but the circularly polarized lasing is readily achieved. Our results bring about the possibility to realize compact and integrated topological photonic devices at low cost, as well as to engineer an ideal platform for exploring topological physics that involves light-matter interaction in soft-matter environments.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC