posted on 2023-04-15, 16:01authored byYusuke O. Nakai, Nobuyuki Okuma, Daichi Nakamura, Kenji Shimomura, Masatoshi Sato
The non-Hermitian skin effects are representative phenomena intrinsic to non-Hermitian systems: the energy spectra and eigenstates under the open boundary condition (OBC) drastically differ from those under the periodic boundary condition (PBC). Whereas a non-trivial topology under the PBC characterizes the non-Hermitian skin effects, their proper measure under the OBC has not been clarified yet. This paper reveals that topological enhancement of non-normality under the OBC accurately quantifies the non-Hermitian skin effects. Correspondingly to spectrum and state changes of the skin effects, we introduce two scalar measures of non-normality and argue that the non-Hermitian skin effects enhance both macroscopically under the OBC. We also show that the enhanced non-normality correctly describes phase transitions causing the non-Hermitian skin effects and reveals the absence of non-Hermitian skin effects protected by average symmetry. The topological enhancement of non-normality governs the perturbation sensitivity of the OBC spectra and the anomalous time-evolution dynamics through the Bauer-Fike theorem.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.