Optica Open
Browse
arXiv.svg (5.58 kB)

Topological state transitions in electromagnetic topological defects

Download (5.58 kB)
preprint
posted on 2023-06-23, 16:00 authored by Peng Shi, Qiang Zhang, Xiaocong Yuan
The recent emergence of electromagnetic topological defects has attracted wide interest in fields from topological photonics to deep-subwavelength light-mater interactions. Previously, much of the research has focused on constructing specific topological defects but the fundamental theory describing the physical mechanisms underlying their formation and transitions is lacking. Here, we present a spin-orbit coupling based theory describing such mechanisms for various configurations of spin topological defects in confined electromagnetic fields. The results reveal that their formation originates from the conservation of total angular momentum and that their transitions are determined by anisotropic spin-orbit couplings. By engineering the spin-orbit couplings, we observe the formation and transitions of Neel-type, twisted-type, and Bloch-type spin topological defects in confined electromagnetic fields. A stable Block-type spin topological defect is reported for the first time. Our theory can also describe the transitions of field topological defects. The findings enrich the portfolio of electromagnetic topological defects, deepen our understanding of conserved laws, spin-orbit couplings and transitions of topological defects in confined electromagnetic systems, and predict applications in high-density optical data transmissions and chiral quantum optics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC