Optica Open
Browse
arXiv.svg (5.58 kB)

Towards Low-Photon Nanoscale Imaging: Holographic Phase Retrieval via Maximum Likelihood Optimization

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:51 authored by David A. Barmherzig, Ju Sun
A new algorithmic framework is presented for holographic phase retrieval via maximum likelihood optimization, which allows for practical and robust image reconstruction. This framework is especially well-suited for holographic coherent diffraction imaging in the \textit{low-photon regime}, where data is highly corrupted by Poisson shot noise. Thus, this methodology provides a viable solution towards the advent of \textit{low-photon nanoscale imaging}, which is a fundamental challenge facing the current state of imaging technologies. Practical optimization algorithms are derived and implemented, and extensive numerical simulations demonstrate significantly improved image reconstruction versus the leading algorithms currently in use. Further experiments compare the performance of popular holographic reference geometries to determine the optimal combined physical setup and algorithm pipeline for practical implementation. Additional features of these methods are also demonstrated, which allow for fewer experimental constraints.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC