Optica Open
Browse

Trace formulation for photonic inverse design with incoherent sources

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:23 authored by Wenjie Yao, Francesc Verdugo, Rasmus E. Christiansen, Steven G. Johnson
Spatially incoherent light sources, such as spontaneously emitting atoms, naively require Maxwell's equations to be solved many times to obtain the total emission, which becomes computationally intractable in conjunction with large-scale optimization (inverse design). We present a trace formulation of incoherent emission that can be efficiently combined with inverse design, even for topology optimization over thousands of design degrees of freedom. Our formulation includes previous reciprocity-based approaches, limited to a few output channels (e.g. normal emission), as special cases, but generalizes to a continuum of emission directions by exploiting the low-rank structure of emission problems. We present several examples of incoherent-emission topology optimization, including tailoring the geometry of fluorescent particles, a periodically emitting surface, and a structure emitting into a waveguide mode, as well as discussing future applications to problems such as Raman sensing and cathodoluminescence.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC