Optica Open
Browse

Transfer efficiency enhancement and eigenstate properties in locally symmetric disordered finite chains

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:59 authored by C. V. Morfonios, M. Röntgen, F. K. Diakonos, P. Schmelcher
The impact of local reflection symmetry on wave localization and transport within finite disordered chains is investigated. Local symmetries thereby play the role of a spatial correlation of variable range in the finite system. We find that, on ensemble average, the chain eigenstates become more fragmented spatially for intermediate average symmetry domain sizes, depending on the degree of disorder. This is caused by the partial formation of states with approximate local parity confined within fictitious, disorder-induced double wells and perturbed by the coupling to adjacent domains. The dynamical evolution of wave-packets shows that the average site-resolved transfer efficiency is enhanced between regions connected by local symmetry. The transfer may further be drastically amplified in the presence of spatial overlap between the symmetry domains, and in particular when global and local symmetry coexist. Applicable to generic discrete models for matter and light waves, our work provides a perspective to understand and exploit the impact of local order at multiple scales in complex systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC