Optica Open
Browse
arXiv.svg (5.58 kB)

Transferable Learning on Analog Hardware

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:00 authored by Sri Krishna Vadlamani, Dirk Englund, Ryan Hamerly
While analog neural network (NN) accelerators promise massive energy and time savings, an important challenge is to make them robust to static fabrication error. Present-day training methods for programmable photonic interferometer circuits, a leading analog NN platform, do not produce networks that perform well in the presence of static hardware errors. Moreover, existing hardware error correction techniques either require individual re-training of every analog NN (which is impractical in an edge setting with millions of devices), place stringent demands on component quality, or introduce hardware overhead. We solve all three problems by introducing one-time error-aware training techniques that produce robust NNs that match the performance of ideal hardware and can be exactly transferred to arbitrary highly faulty photonic NNs with hardware errors up to 5x larger than present-day fabrication tolerances.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC