Optica Open
Browse
- No file added yet -

Transition Slow-Down by Rydberg Interaction of Neutral Atoms and a Fast Controlled-NOT Quantum Gate

Download (5.58 kB)
preprint
posted on 2023-01-11, 21:56 authored by Xiao-Feng Shi
Exploring controllable interactions lies at the heart of quantum science. Neutral Rydberg atoms provide a versatile route toward flexible interactions between single quanta. Previous efforts mainly focused on the excitation annihilation~(EA) effect of the Rydberg blockade due to its robustness against interaction fluctuation. We study another effect of the Rydberg blockade, namely, the transition slow-down~(TSD). In TSD, a ground-Rydberg cycling in one atom slows down a Rydberg-involved state transition of a nearby atom, which is in contrast to EA that annihilates a presumed state transition. TSD can lead to an accurate controlled-{\footnotesize NOT}~({\footnotesize CNOT}) gate with a sub-$\mu$s duration about $2\pi/\Omega+\epsilon$ by two pulses, where $\epsilon$ is a negligible transient time to implement a phase change in the pulse and $\Omega$ is the Rydberg Rabi frequency. The speedy and accurate TSD-based {\footnotesize CNOT} makes neutral atoms comparable~(superior) to superconducting~(ion-trap) systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC