Optica Open
Browse
arXiv.svg (5.58 kB)

Transition to strong coupling regime in hybrid plasmonic systems: Exciton-induced transparency and Fano interference

Download (5.58 kB)
preprint
posted on 2023-01-11, 23:01 authored by Tigran V. Shahbazyan
We present a microscopic model describing the transition to strong coupling regime for an emitter resonantly coupled to a surface plasmon in a metal-dielectric structure. We demonstrate that the shape of scattering spectra is determined by an interplay of two distinct mechanisms. First is the near-field coupling between the emitter and the plasmon mode which underpins energy exchange between the system components and gives rise to exciton-induced transparency minimum in scattering spectra prior the transition to strong coupling regime. The second mechanism is Fano interference between the plasmon dipole and the plasmon-induced emitter's dipole as the system interacts with the radiation field. We show that the Fano interference can strongly affect the overall shape of scattering spectra, leading to the inversion of spectral asymmetry that was recently reported in the experiment.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC