Optica Open
Browse

Transverse photon spin beyond interfaces

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:43 authored by Liang Peng, Lingfu Duan, Kewen Wang, Fei Gao, Li Zhang, Gaofeng Wang, Yihao Yang, Hongsheng Chen, Shuang Zhang
Photons possess spin degree of freedom, corresponding to clockwise and counter clockwise rotating direction of the fields. Photon spin plays an important role in various applications such as optical communications, information processing and sensing. In conventional isotropic media, photon spin is aligned with the propagation direction of light, obeying spin momentum locking. Interestingly, at certain interfaces, the surface waves decaying away from the interface possess a photon spin transverse to its propagation, opening exciting opportunities for observation of spin dependent unidirectional excitation in confined systems. Here we propose and realize transverse photon spin (T-spin) in the interior of a bulk medium, without relying on the presence of any interfaces. We show the complete mapping of the T-spin of surface modes to that of the bulk modes by introducing the coupling between electric and magnetic responses along orthogonal directions, i.e., the bianisotropy, into the medium. We further discover that an interface formed by two bianisotropic media of opposite orientations supports edge-dependent propagating modes with tunable cutoff frequencies. Our results provide a new platform for manipulating the spin orbit interaction of electromagnetic waves.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC