Optica Open
Browse

Tunable partial polarization beam splitter and optomechanically induced Faraday effect

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:44 authored by Xuan Mao, Guo-Qing Qin, Hong Yang, Zeguo Wang, Min Wang, Gui-Qin Li, Peng Xue, Gui-Lu Long
Polarization beam splitter (PBS) is a crucial photonic element to separately extract transverse-electric (TE) and transverse-magnetic (TM) polarizations from the propagating light fields. Here, we propose a concise, continuously tunable and all-optical partial PBS in the vector optomechanical system which contains two orthogonal polarized cavity modes with degenerate frequency. The results show that one can manipulate the polarization states of different output fields by tuning the polarization angle of the pumping field and the system function as partial PBS when the pump laser polarizes vertically or horizontally. As a significant application of the tunable PBS, we propose a scheme of implementing quantum walks in resonator arrays without the aid of other auxiliary systems. Furthermore, we investigate the optomechanically induced Faraday effect in the vector optomechanical system which enables arbitrary tailoring of the input lights and the behaviors of polarization angles of the output fields in the under couple, critical couple, and over couple regimes. Our findings prove the optomechanical system is a potential platform to manipulate the polarization states in multimode resonators and boost the process of applications related to polarization modulation.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC