Optica Open
Browse

Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources

Download (5.58 kB)
preprint
posted on 2023-09-27, 16:00 authored by Jiawei Yang, Yan Chen, Zixuan Rao, Ziyang Zheng, Changkun Song, Yujie Chen, Kaili Xiong, Pingxing Chen, Chaofan Zhang, Wei Wu, Ying Yu, Siyuan Yu
Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies. Nevertheless, harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs' emission with the cavity mode, which is challenging for most cavities. Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator, and demonstrated a bright single photon source derived from a deterministically coupled QD within this microcavity. Leveraging the cavity-membrane structures, we have achieved large spectral-tunability via strain tuning. On resonance, we have obtained a high Purcell factor of approximately 9. The source delivers single photons with simultaneous high extraction efficiency of 0.58, high purity of 0.956(2) and high indistinguishability of 0.922(4). Together with a small footprint, our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip, and therefore removes a major barrier to the solid-state quantum information platforms based on QDs.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC