Optica Open
Browse

Ultra-Efficient DC-gated all-optical graphene switch

Download (5.58 kB)
preprint
posted on 2023-01-12, 16:05 authored by Mohammed Alaloul, Khalil As'ham, Haroldo T. Hattori, Andrey E. Miroshnichenko
The ultrafast response and broadband absorption of all-optical graphene switches are highly desirable features for on-chip photonic switching. However, because graphene is an atomically thin material, its absorption of guided optical modes is relatively low, resulting in high saturation thresholds and switching energies for these devices. To boost the absorption of graphene, we present a practical design of an electrically-biased all-optical graphene switch that is integrated into silicon slot waveguides, which strongly confine the optical mode in the slotted region and enhance its interaction with graphene. Moreover, the design incorporates a silicon slab layer and a hafnia dielectric layer to electrically tune the saturation threshold and the switching energy of the device by applying DC voltages of <0.5 V. Using this device, a high extinction ratio (ER) of 10.3dB, a low insertion loss (IL) of <0.7dB, and an ultra-efficient switching energy of 79fJ/bit at 0.23V bias are attainable for a 40um long switch. The reported performance metrics for this device are highly promising and are expected to serve the needs of next-generation photonic computing systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC