Optica Open
Browse
arXiv.svg (5.58 kB)

Ultra-low-loss optical interconnect enabled by topological unidirectional guided resonance

Download (5.58 kB)
preprint
posted on 2023-06-18, 16:01 authored by Haoran Wang, Yi Zuo, Xuefan Yin, Zihao Chen, Zixuan Zhang, Feifan Wang, Yuefeng Hu, Xiaoyu Zhang, Chao Peng
Grating couplers that interconnect photonic chips to off-chip components are of essential importance for various optoelectronics applications. Despite numerous efforts in past decades, existing grating couplers still suffer from poor energy efficiency and thus hinder photonic integration toward a larger scale. Here, we theoretically propose and experimentally demonstrate a method to achieve ultra-low-loss grating coupler by employing topological unidirectional guided resonances (UGRs). Leveraging the unidirectional emitting nature of UGRs, the useless downward radiation is greatly suppressed with no mirror placed on the bottom. By engineering the dispersion and apodizing the geometry of grating, we realize a grating coupler on 340 nm silicon-on-insulator platform with a record-low-loss of 0.34 dB and bandwidth exceeding 30 nm at the telecom wavelength of 1550 nm. We further show a pair of grating couplers works as optic via that interconnects two stacked photonic chips with a loss of only 0.94 dB. Our work sheds light on the feasibility of energy-efficient optical interconnect for silicon photonics, and paving the way to large-scale photonic integration for applications from optical communication to photonic computing.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC