Optica Open
Browse

Ultra-wideband integrated microwave photonic multi-parameter measurement system on thin-film lithium niobate

Download (5.58 kB)
preprint
posted on 2024-09-14, 16:00 authored by Yong Zheng, Zhen Han, LiHeng Wang, Pu Zhang, YongHeng Jiang, HuiFu Xiao, XuDong Zhou, Mingrui Yuan, Mei Xian Low, Aditya Dubey, Thach Giang Nguyen, Andreas Boes, Qinfen Hao, Guanghui Ren, Arnan Mitchell, Yonghui Tian
Research on microwave signal measurement techniques is risen, driven by the expanding urgent demands of wireless communication, global positioning systems, remote sensing and 6G networks. In stark contrast with traditional electronic-based realization, the implementations of microwave signal measurement systems based on integrated compact photonic chip have exhibited distinct advantages in high operation bandwidth, light weight, and strong immunity to electromagnetic interference. However, although numerous integrated microwave photonic signal measurement systems have been reported, measurement bandwidth of the majority of them is still below 30 GHz due to the bandwidth limitation of electro-optical modulators (EOMs). Furthermore, previous studies often are more focused on the measurement of one single parameter (typically the frequency) of microwave signals, which has hindered their practical application in complex situations. Here, an integrated photonic microwave multi-parameter measurement system composed of microwave frequency measurement module and microwave phase amplitude measurement module based on thin-film lithium niobate (TFLN) platform is reported. Utilizing this system, not only the ultra-high bandwidth (up to 60GHz) of microwave frequency, phase and amplitude measurement with low root-mean-squares errors (450MHz, 3.43{\deg} and 1.64% of the measurement for frequency, phase and amplitude, respectively), but also the time-domain reconstruction of sinusoidal microwave signals is achieved. This demonstration further broadens the application of integrated TFLN photonic devices in microwave signal measurement technology to address the bandwidth bottleneck of the ever-growing microwave networks in the future information society.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC