Optica Open
Browse
- No file added yet -

Ultracompact energy transfer in anapole-based metachains

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:10 authored by T. C. Huang, B. X. Wang, W. B. Zhang, C. Y. Zhao
Realization of electromagnetic energy confinement beyond the diffraction limit is of paramount importance for novel applications like nano-imaging, information processing, and energy harvest. Current approaches based on surface plasmon polaritons and photonic crystals are either intrinsically lossy or with low coupling efficiency. Herein, we successfully address these challenges by constructing an array of nonradiative anapoles that originate from the destructive far-field interference of electric and toroidal dipole modes. The proposed metachain can achieve ultracompact (1/13 of incident wavelength) and high-efficiency electromagnetic energy transfer without the coupler. We experimentally investigate the proposed metachain at mid-infrared and give the first near-field experimental evidence of anapole-based energy transfer, in which the spatial profile of anapole mode is also unambiguously identified at nanoscale. We further demonstrate the metachain is intrinsically lossless and scalable at infrared wavelengths, realizing a 90$^\circ$ bending loss down to 0.32 dB at the optical communication wavelength. The present scheme bridges the gap between the energy confinement and transfer of anapoles, and opens a new gate for more compactly integrated photonic and energy devices, which can operate in a broad spectral range.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC