Optica Open
Browse

Ultrafast collapse of molecular polaritons in photoswitch-nanoantennas at room temperature

Download (5.58 kB)
Version 2 2023-06-08, 12:55
Version 1 2023-01-12, 15:39
preprint
posted on 2023-06-08, 12:55 authored by Joel Kuttruff, Marco Romanelli, Esteban Pedrueza-Villalmanzo, Jonas Allerbeck, Jacopo Fregoni, Valeria Saavedra-Becerril, Joakim Andréasson, Daniele Brida, Alexandre Dmitriev, Stefano Corni, Nicolò Maccaferri
Molecular polaritons are hybrid light-matter states that emerge when a molecular transition strongly interacts with photons in a resonator. At optical frequencies, this interaction unlocks a way to explore and control new chemical phenomena at the nanoscale. Achieving such a control at ultrafast timescales, however, is an outstanding challenge, as it requires a deep understanding of the dynamics of the collectively coupled molecular excitation and the nanoconfined electromagnetic fields. Here, we investigate the dynamics of collective polariton states, realized by coupling molecular photoswitches to optically anisotropic plasmonic nanoantennas. Pump-probe experiments reveal an ultrafast collapse of polaritons to a single-molecule transition triggered by femtosecond-pulse excitation at room-temperature. Through a synergistic combination of experiments and quantum mechanical modelling, we show that the response of the system is governed by intramolecular dynamics, occurring one order of magnitude faster with respect to the unperturbed excited molecule relaxation to the ground state.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC