Optica Open
Browse

Ultrafast intrinsic optical-to-electrical conversion dynamics in graphene photodetector

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:29 authored by Katsumasa Yoshioka, Taro Wakamura, Masayuki Hashisaka, Kenji Watanabe, Takashi Taniguchi, Norio Kumada
Optical-to-electrical (O-E) conversion in graphene is a central phenomenon for realizing anticipated ultrafast and low-power-consumption information technologies. However, revealing its mechanism and intrinsic time scale require uncharted terahertz (THz) electronics and device architectures. Here, we succeeded in resolving O-E conversion processes in high-quality graphene by on-chip electrical readout of ultrafast photothermoelectric current. By suppressing the RC time constant using a resistive zinc oxide top gate, we constructed a gate-tunable graphene photodetector with a bandwidth of up to 220 GHz. By measuring nonlocal photocurrent dynamics, we found that the photocurrent extraction from the electrode is instantaneous without a measurable carrier transit time across several-micrometer-long graphene, following the Shockley-Ramo theorem. The time for photocurrent generation is exceptionally tunable from immediate to > 4 ps, and its origin is identified as Fermi-level-dependent intraband carrier-carrier scattering. Our results bridge the gap between ultrafast optical science and device engineering, accelerating ultrafast graphene optoelectronic applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC