Optica Open
Browse
arXiv.svg (5.58 kB)

Ultralight dark matter searches with KAGRA gravitational wave telescope

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:21 authored by Yuta Michimura, Tomohiro Fujita, Jun'ya Kume, Soichiro Morisaki, Koji Nagano, Hiromasa Nakatsuka, Atsushi Nishizawa, Ippei Obata
Among various dark matter candidates, bosonic ultralight fields with masses below 1~eV are well motivated. Recently, a number of novel approaches have been put forward to search for ultralight dark matter candidates using laser interferometers at various scales. Those include our proposals to search for axion-like particles (ALPs) and vector fields with laser interferometric gravitational wave detectors. ALPs can be searched for by measuring the oscillating polarization rotation of laser light. Massive vector fields weakly coupled to the standard model sector can also be searched for by measuring the oscillating forces acting on the suspended mirrors of the interferometers. In this paper, the current status of the activities to search for such ultralight dark matter candidates using a gravitational wave detector in Japan, KAGRA, is reviewed. The analysis of data from KAGRA's observing run in 2020 to search for vector dark matter, and the installation of polarization optics to the arm cavity transmission ports of the interferometer to search for ALPs in future observing runs are underway.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC