Optica Open
Browse

Unravelling and circumventing failure mechanisms in chalcogenide optical phase change materials

Download (5.58 kB)
preprint
posted on 2024-09-21, 16:00 authored by Cosmin Constantin Popescu, Kiumars Aryana, Brian Mills, Tae Woo Lee, Louis Martin-Monier, Luigi Ranno, Jia Xu Brian Sia, Khoi Phuong Dao, Hyung-Bin Bae, Vladimir Liberman, Steven Vitale, Myungkoo Kang, Kathleen A. Richardson, Carlos A. Ríos Ocampo, Dennis Calahan, Yifei Zhang, William M. Humphreys, Hyun Jung Kim, Tian Gu, Juejun Hu
Chalcogenide optical phase change materials (PCMs) have garnered significant interest for their growing applications in programmable photonics, optical analog computing, active metasurfaces, and beyond. Limited endurance or cycling lifetime is however increasingly becoming a bottleneck toward their practical deployment for these applications. To address this issue, we performed a systematic study elucidating the cycling failure mechanisms of Ge$_2$Sb$_2$Se$_4$Te (GSST), a common optical PCM tailored for infrared photonic applications, in an electrothermal switching configuration commensurate with their applications in on-chip photonic devices. We further propose a set of design rules building on insights into the failure mechanisms, and successfully implemented them to boost the endurance of the GSST device to over 67,000 cycles.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC