Optica Open
Browse

Unsupervised neural-implicit laser absorption tomography for quantitative imaging of unsteady flames

Download (5.58 kB)
preprint
posted on 2025-01-17, 17:00 authored by Joseph P. Molnar, Jiangnan Xia, Rui Zhang, Samuel J. Grauer, Chang Liu
This paper presents a novel neural-implicit approach to laser absorption tomography (LAT) with an experimental demonstration. A coordinate neural network is used to represent thermochemical state variables as continuous functions of space and time. Unlike most existing neural methods for LAT, which rely on prior simulations and supervised training, our approach is based solely on LAT measurements, utilizing a differentiable observation operator with line parameters provided in a standard spectroscopy database format. Although reconstructing scalar fields from multi-beam absorbance data is an inherently ill-posed, nonlinear inverse problem, our continuous space-time parameterization supports physics-inspired regularization strategies and enables data assimilation. Synthetic and experimental tests are conducted to validate the method, demonstrating robust performance and reproducibility. We show that our neural-implicit approach to LAT can capture the dominant spatial modes of an unsteady flame from very sparse measurement data, indicating its potential to reveal combustion instabilities in measurement domains with minimal optical access.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC