Optica Open
Browse

Unveiling the origins of quasi-phase matching spectral imperfections in thin-film lithium niobate frequency doublers

Download (5.58 kB)
preprint
posted on 2023-07-15, 16:01 authored by Jie Zhao, Xiaoting Li, Ting-Chen Hu, Ayed Al Sayem, Haochuan Li, Al Tate, Kwangwoong Kim, Rose Kopf, Pouria Sanjari, Mark Earnshaw, Nicolas K. Fontaine, Cheng Wang, Andrea Blanco-Redondo
Thin-film lithium niobate (TFLN) based frequency doublers have been widely recognized as essential components for both classical and quantum optical communications. Nonetheless, the efficiency of these devices is hindered by imperfections present in the quasi-phase matching (QPM) spectrum. In this study, we present a thorough analysis of the spectral imperfections in TFLN frequency doublers with varying lengths, ranging from 5 mm to 15 mm. Employing a non-destructive diagnostic method based on scattered light imaging, we identify the sources and waveguide sections that contribute to the imperfections in the QPM spectrum. Furthermore, by mapping the TFLN film thickness across the entire waveguiding regions, we successfully reproduce the QPM spectra numerically, thus confirming the prominent influence of film thickness variations on the observed spectral imperfections. This comprehensive investigation provides valuable insights into the identification and mitigation of spectral imperfections in TFLN-based frequency doublers, paving the way toward the realization of nonlinear optical devices with enhanced efficiency and improved spectral fidelity.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC